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The Spectrometer/Telescope for Imaging X-rays (STIX)
on-board the ESA Solar Orbiter mission retrieves the coor-
dinates of solar flare locations by means of a specific sub-
collimator, named the Coarse Flare Locator (CFL). When
a solar flare occurs on the Sun, the emitted X-ray radia-
tion casts the shadow of a peculiar “H-shaped” tungsten
grid over the CFL X-ray detector. From measurements of
the areas of the detector that are illuminated by the X-ray
radiation, it is possible to retrieve the (x,y) coordinates of
the flare location on the solar disk.

In this paper, we train a neural network on a dataset of
real CFL observations to estimate the coordinates of solar
flare locations. Further, we apply a post-training quantiza-
tion technique specifically tailored to the adopted model
architecture. This technique allows all computations to
be in integer arithmetic at inference time, making the
model compatible with the STIX computational require-
ments. We show that our model outperforms the currently
adopted algorithm for estimating the flare locations from
CFL data regarding prediction accuracy while requiring
fewer parameters. We finally discuss possible future ap-
plications of the proposed model on-board STIX.

1 Introduction

The Spectrometer/Telescope for Imaging X-rays
(STIX; [1]) is the telescope of the ESA Solar Orbiter
mission [2] dedicated to the observation of solar flares.
STIX measures the flaring X-ray radiation between 4
and 150 keV by means of Cadmium-Telluride (CdTe)
detectors [3], which count the number of incident
X-ray photons. Specifically, 30 STIX detectors are
mounted behind pairs of tungsten grids, which mod-
ulate the incident X-ray radiation and encode infor-
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mation on the morphology and location of the X-ray
source(s). The units consisting of a detector and a grid
pair, named sub-collimators, provide indirect informa-
tion on the flaring X-ray source(s) in terms of a limited
number of corresponding 2D Fourier components [4].
Therefore, once the STIX data are downloaded to the
ground, it is possible to reconstruct the image of the
X-ray source(s) for a specific flaring event by solving
a Fourier inversion problem [5].

STIX contains an additional sub-collimator, named
the Coarse Flare Locator (CFL), which provides infor-
mation on the (x,y) coordinates of the flare location on
the solar disk with an accuracy of a couple of arcmin-
utes [1]. The CFL sub-collimator consists of a front
grid with a peculiar “H-shaped” design, while the rear
grid is open. The location of the X-ray shadow cast by
the front grid on the detector surface varies depend-
ing on the flare’s location on the Sun. Therefore, the
(x,y) coordinates of the flare location are uniquely de-
termined from measurements of the illuminated areas
of the CFL detector (see Figure 1).

The estimates of the flare location provided by the
STIX CFL are extremely important for several rea-
sons. First, they can be sent to other Solar Orbiter
instruments for coordinated flare observations. Sec-
ond, the flare locations estimated on-board are sent
to the ground as quick-look data products with re-
duced latency (within less than a day) [1, 7]. Since,
due to telemetry constraints, the STIX science data are
available only after several weeks, the flare locations
saved in the quick-look data products are important
for preliminary analysis and for performing appro-
priate data requests from the ground [7]. Finally, it
is the first time a device like the STIX CFL operates
within a space mission. Therefore, the flare locations
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Figure 1: Simulated shadow of the CFL front grid that is cast on the detector surface by three point-like flare sources located
in as many different locations on the solar disk. The detector edges are plotted in black, while the grid shadow is overlaid
in gray. The simulated flare locations are (x,y) = (−1000′′ ,0′′), (x,y) = (0′′ ,0′′), and (x,y) = (0′′ ,1000′′) from left to right,
respectively. The simulation is performed by means of the pystixsim library [6].

computed on-board STIX are extremely valuable to
demonstrate that this technique works as expected in
a deep space environment and, therefore, a similar sys-
tem could be used in future space weather missions.

In this work, we develop a machine learning ap-
proach to predict the coordinates of the flare location
from CFL data. We construct a dataset of real CFL
measurements and label them with the corresponding
location obtained from images of flares reconstructed
from STIX data. We train a multi-layer perceptron
(MLP) and apply a post-training model quantization
technique specifically developed for the adopted MLP
architecture. In this way, at inference time, our model
applies only integer arithmetic and, therefore, satisfies
the computational requirements to be run on-board
STIX. We compare the performance of our model with
that of the currently used CFL algorithm, showing
that the MLP outperforms the CFL algorithm in terms
of prediction accuracy.

The paper is organized as follows. Section 2 con-
tains the details of the dataset we constructed, the
MLP architecture and training, the CFL algorithm,
and the comparison between MLP and the CFL algo-
rithm performances on the test set. Finally, Section 3
contains our discussions on the results and future
work.

2 Results

We define an MLP with three hidden layers, each con-
sisting of 100 neurons. The activation function of each
neuron is a Rectified Linear Unit (ReLU [8]). Our MLP
takes a 9-dimensional input. The first eight entries are
the number of counts registered in the large pixels1

1A STIX detector is partitioned into 12 units, called pixels, which
count the number of incident X-ray photons independently (see

of the CFL detector. The ninth entry is the sum of
the counts registered by a separate imaging detector
(labeled as 7b; see Table 2 in [1]), which has been cho-
sen since it shares similar calibration properties as
the CFL. This ninth value provides an independent
estimate of the total flux (i.e., total number of counts
per unit of area) that should be recorded in the CFL
pixels. For example, let’s consider the case when one
of the two rows of the CFL pixels is fully covered by
the mask shadow, as shown in the right panel in Fig-
ure 1. By comparing the number of counts recorded
by the illuminated pixels of the CFL with the total
number of counts recorded by detector 7b, the MLP
can determine the amount of illuminated area of the
CFL pixels and, therefore, estimate the flare location
correctly. The MLP’s output layer consists of two neu-
rons, which represent the x and y coordinates of the
flare location on the solar disk. No activation function
is used in the output layer.

2.1 Dataset

We consider 2150 solar flares recorded by STIX be-
tween 2021 March 19 and 2023 August 28. In this
proof of concept study, we do not consider flaring
events with locations outside the full-sensitivity FOV
of STIX (see Section 5 in [4]) since they are quite rare
(fewer than 10% of the total events) and make the neu-
ral network training more challenging. For each event
we consider the raw counts measured by the STIX de-
tector pixels in 32 energy channels and in several con-
secutive time bins, whose number varies from event
to event. We sum the counts recorded between 5 and
9 keV, and group the data in bins larger or equal to 8 s.
We extract the 9-dimensional vector of each bin to be

Figure 1). In particular, there are 8 large pixels (top and bottom
row) and 4 small ones (central row).
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Figure 2: Full-disk image reconstructed from STIX data.
The solar limb is plotted as a white circle, and the flare loca-
tion (x,y) ≃ (250′′ ,−350′′) is indicated with a white arrow.

used as input to the MLP. At the same time, the flare’s
location, which will be used to train the MLP, is deter-
mined for each time bin from measurements provided
by the STIX imaging detectors. We recall that STIX
does not provide us directly with images of the flaring
X-ray radiation. Rather, STIX measures a limited num-
ber of 2D Fourier components of the signal; therefore,
an image reconstruction process is needed to obtain
the flare image from STIX measurements. As shown
in Figure 2, we reconstruct a full-disk map from STIX
data using a direct Fourier inversion method, named
Back Projection [4, 5]. Then, we derive the coordinates
of the flare location by identifying the position of the
brightest area in the map, i.e., the location at which
the X-ray emission is most intense. Note that the STIX
image in Figure 2 shows a background pattern around
the flare location which does not represent a real flar-
ing emission. This pattern is a ringing effect due to
the limited number of Fourier components available
for image reconstruction and to the adopted image
reconstruction method.

The resulting dataset is divided into training, vali-
dation, and test sets as follows. Samples constructed
from files recorded between 2021 March 19 and 2022
November 15 (18K data points) are used for train-
ing, samples constructed from files recorded between
2022 November 15 and 2023 April 4 (13K data points)
are used for validation, and the remaining ones (11K
data points) are used for test. We did not use a ran-
dom split of the dataset to avoid data leakage, where
data points from the same flare would end up in both
training and test sets. This would result in metrics
overestimating the MLP performance.

2.2 MLP implementation and training

We implemented our MLP using the Python Tensor-
flow library [9]. Two normalization techniques appro-
priate for the requirements of the input and expected
output data are applied prior to training the network.
Input arrays are rescaled by their maximum value.
Normalizing the input values is permissible, as the in-
tensity of the flare is not relevant when determining
its location. Similarly, the labels (i.e., the x and y coor-
dinates of the flare locations) are divided by a value
f larger than the maximum dimension of the STIX
Field-of-View (FOV). In this case, we set f = 4000′′ .
MLP training has been performed with the Adam op-
timizer [10] and using a Mean Squared Error (MSE)
loss function.

2.3 Post-training quantization

Since the STIX data processing unit does not support
floating-point arithmetic, we apply a post-training
quantization of inputs, weights, and outputs to en-
sure that all the network computations are performed
in 16-bit fixed-point integer arithmetic at inference
time. As our specific hardware requirements are not
satisfied by the available quantization algorithms, we
use the custom approach described in the following.
We determined the range of all intermediate results
by finding extremal values in a Mixed Integer Linear
Programming representation of the network. A mathe-
matical solver [11] proved that all numbers are strictly
less than 25, irrespective of the network’s input. Thus,
we use 5 bits to represent the integral part, and the
remaining 11 bits to represent the fractional part of
each number. This way, our proposed model meets
the computational requirements to be potentially run
on-board the STIX instrument.

To convert the input values to fixed-point form, we
use

xscaled =
(
xinput · 211

)
// m , (1)

where m is the maximum of the 9 input values, and
// denotes integer division (applied component-wise
where needed). At the end of these operations, the
input values are integers between 0 and 211.

During the forward pass of the network, 16-bit in-
put values are multiplied by 16-bit weights. The re-
sults are integers between 0 and 232, which must be
converted back to the 16-bit fixed-point representa-
tion by right shifting 11 bits. Finally, we add the bias
term and apply the ReLU activation function. In sum-
mary, the output vector of a network layer is

o = ReLU
((

W · x + 2101⃗
)
≫ 11 + b

)
, (2)

where W is the weight matrix, 1⃗ an all-one vector,
b is the bias array, and ≫ denotes the component-



Figure 3: Comparison of the quantized MLP and CFL algorithm performances on the test set examples. Left and middle
panels: scatter plots of the x (left) and y (middle) coordinates of the flare locations estimated by the MLP (orange) and by
the CFL algorithm (blue) as a function of the coordinates obtained from the reconstructed STIX images. The identity line
representing exact estimates is overlaid in red as a reference. Right panel: histograms of the distances between the flare
locations estimated by the MLP (orange) and the CFL algorithm (blue) and the locations derived from STIX reconstructed
images. The mean values of the quantized MLP distances and of the CFL algorithm ones are plotted with a dashed red and
black line, respectively.

wise right shift operator. We note that the same op-
erations are performed in the network’s output layer,
sans ReLU activation. Finally, since inputs, weights,
and biases of the network are scaled by 211, and since
ReLU is a positively homogeneous function of degree
one (i.e., ReLU(α ·x) = αReLU(x) for all α > 0), the out-
put of the network is also scaled by 211. Thus the co-
ordinates c computed by the network must be scaled
back, also taking into account the fact that the output
of the network during training has been divided by
a value f (see Section 2.2). The array containing the
estimated flare location coordinates is then

cfinal =
(
c · f + 2101⃗

)
≫ 11 , (3)

where c is the two-dimensional output of the network.

2.4 CFL algorithm

During flaring events, the X-ray radiation is blocked
by the tungsten “H-shaped” front grid of the CFL sub-
collimator, and a shadow is cast on the corresponding
detector (see Figure 1). The current on-board imple-
mentation of the CFL algorithm relies on a lookup
table containing the values of the area of the eight
large CFL pixels that would be illuminated by a point
source located at each of 65 × 65 points on the so-
lar disk, uniformly separated by a distance of 2′ . The
CFL algorithm normalizes the eight large pixel mea-
surements by an estimate of the total flux (i.e., total
number of counts per unit of area) derived from the
imaging sub-collimators, thus obtaining the fraction
of illuminated area for each pixel. Then, the method

compares the observed illuminated areas with the en-
tries of the lookup table, and returns the location cor-
responding to the maximum correlation.

In this proof of concept study, we utilize an on-
ground Interactive Data Language (IDL) implemen-
tation of the CFL algorithm, and we apply it to our
dataset (see Section 2.1). Differently from the on-
board implementation, this version applies a final in-
terpolation step between the coordinates correspond-
ing to the largest correlation with the observations2.
Therefore, the on-ground implementation of the CFL
algorithm can improve the 2′ resolution of the lookup
table.

2.5 Results on test set

Figure 3 compares the flare location coordinates ob-
tained by means of the quantized neural network with
those obtained by means of the CFL algorithm. The
left and middle panels show the scatter plots of the x
and y coordinates of the flare locations obtained with
the two methods as a function of the coordinates re-
trieved from the reconstructed STIX images. The loca-
tions derived from imaging are the reference values;
therefore, exact estimates would result in scatter plots
along the identity diagonal, which is plotted in red
as a reference. The MLP predictions (orange) of the
x coordinate show an agreement with the locations
derived from imaging which is comparable with that
of the CFL algorithm (blue). However, regarding the
y coordinate (middle panel), the MLP is substantially

2The interpolation step is not performed in the on-board imple-
mentation of the CFL algorithm to reduce its computational cost.



more accurate than the CFL algorithm. This is particu-
larly true for samples corresponding to flare locations
400′′ < |y| < 1200′′ . In these locations one of the two
rows of the CFL pixels is completely covered by the
shadow of the “H-shaped” front grid (see the right
panel of Figure 1). To determine the amount of illu-
minated area in the large pixels, the CFL algorithm
normalizes the measurements provided by the CFL
pixels using an independent estimate of the total flux
derived from the imaging sub-collimators (see Sec-
tion 2.4). It is likely that the cross-calibration between
CFL measurements and those provided by the imag-
ing sub-collimators is not yet optimal, which would
explain the bias in the algorithm’s estimate of the flare
location.

In the right panel of Figure 3 we plot the histogram
of the distances between the flare locations estimated
by the methods and those derived from the recon-
structed images. The mean distance of the CFL algo-
rithm predictions is 280′′ , while the mean distance of
the MLP predictions is 97′′ , a marked improvement
in accuracy.

3 Discussion

In this work, we develop a machine learning method
for estimating the (x,y) coordinates of flare locations
on the solar disk from STIX CFL data. Our model, cou-
pled with a post-training quantization technique, is
more accurate than the algorithm currently adopted
on-board STIX. Further, the CFL algorithm is based
on a lookup table, which requires 65×65×8 ≃ 34K pa-
rameters to be stored in memory, while our proposed
MLP utilizes only 21K parameters (i.e., the total num-
ber of weights and biases).

The post-training quantization technique specifi-
cally developed for the adopted model architecture
allows the MLP to use integer arithmetic at inference
time, as required by the STIX data processing unit.
The quantization technique does not affect the perfor-
mance of the model. Indeed, the distance between the
locations estimated by the quantized MLP and those
estimated by the non-quantized model for the test set
examples is, on average, 9′′ , with a maximum distance
of 24′′ .

In this work we have considered an MLP with 3
layers and 100 neurons per layer. This choice of the
model architecture was done based on some trial and
error tests. However, it is possible that even lighter
models can be used for addressing the same task with
similar accuracy. Before considering using the trained
neural network on-board STIX, we will more sys-
tematically search for the model architecture which
provides the best trade-off between prediction accu-

racy of and low number of parameters by means of
well-established techniques [12, 13]. In future work,
we will also include flaring events outside the full-
sensitivity STIX FOV in the training set.

Although more complex network architectures (e.g.,
convolutional neural networks) could be considered
for this work, we decided to adopt an MLP model
since the number of data points (9 elements) and
number of output values (2 elements) is very small.
Given that the average error of the adopted MLP on
the test set examples (97′′) is already within the de-
sign accuracy of CFL sub-collimator (∼2′), we do not
expect more complex architectures to have substan-
tially improved performances compared to the MLP.
Further, the MLP model was chosen as it could be
easily implemented within the STIX flight software.
More complex model architectures would require a
greater effort for the implementation on-board STIX,
since the flight software can not leverage on standard
Python libraries that are usually adopted for defining
the models (e.g., Tensorflow [9]). Finally, we demon-
strated that the MLP can be made compatible with
the STIX hardware requirements by means of an ap-
propriate post-training quantization technique. The
same quantization method can not be applied to ev-
ery model. Therefore, other models could require the
implementation of tailored (and potentially complex)
quantization methods.

The dataset and the code implemented for
this study can be found at https://github.com/

paolomassa/STX_CFL_NN.git.
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